20/08/2022

super-lank.com

Information From Lank

Multigenerational laboratory tradition of pelagic ctenophores and CRISPR–Cas9 genome enhancing within the lobate Mnemiopsis leidyi

  • Dunn, C. W., Leys, S. P. & Haddock, S. H. D. The hidden biology of sponges and ctenophores. Traits Ecol. Evol. 30, 282–291 (2015).

    PubMed 
    Article 

    Google Pupil 

  • Neff, E. P. What’s a lab animal? Lab Anim. 47, 223–227 (2018).

    Article 

    Google Pupil 

  • Ryan, J. F., Schnitzler, C. E. & Tamm, S. L. Assembly record of Ctenopalooza: the primary world assembly of ctenophorologists. Evodevo 7, 19 (2016).

    PubMed Central 
    Article 

    Google Pupil 

  • Chun, C. Die Ctenophoren des Golfes von Neapel und der angrenzenden Meeres-Abschnitte. (W. Engelmann, 1880).

  • Hyman, L. H. in The Invertebrates: Protozoa by way of Ctenophora vol. 1 662–695 (McGraw-Hill, 1940).

  • Harbison, G. R., Madin, L. P. & Swanberg, N. R. At the herbal historical past and distribution of oceanic ctenophores. Deep Sea Res. I 25, 233–256 (1978).

    Article 

    Google Pupil 

  • Harbison, G. R. in The Origins and Relationships of Decrease Invertebrates (eds. Morris, S. C., George, J. D., Gibson, R. & Platt, H. M.) 78–100 (Oxford Univ. Press, 1985).

  • Turbines, C. E. & Haddock, S. H. D. in Gentle and Smith’s Handbook: Intertidal Invertebrates of the Central California Coast (ed. Carlton, J. T.) 47–49 (Univ. California Press, 2007).

  • Pang, Ok. & Martindale, M. Q. Ctenophores. Curr. Biol. 18, R1119–R1120 (2008).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Dunn, C. W. et al. Large phylogenomic sampling improves solution of the animal tree of lifestyles. Nature 452, 745–749 (2008).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Hejnol, A. et al. Assessing the foundation of bilaterian animals with scalable phylogenomic strategies. Proc. Biol. Sci. 276, 4261–4270 (2009).

    PubMed 
    PubMed Central 

    Google Pupil 

  • Philippe, H. et al. Phylogenomics revives conventional perspectives on deep animal relationships. Curr. Biol. 19, 706–712 (2009).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Select, Ok. S. et al. Stepped forward phylogenomic taxon sampling noticeably impacts nonbilaterian relationships. Mol. Biol. Evol. 27, 1983–1987 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Ryan, J. F. et al. The genome of the ctenophore Mnemiopsis leidyi and its implications for cellular sort evolution. Science 342, 1242592 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Pupil 

  • Moroz, L. L. et al. The ctenophore genome and the evolutionary origins of neural programs. Nature 510, 109–114 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Pisani, D. et al. Genomic knowledge don’t beef up comb jellies because the sister crew to all different animals. Proc. Natl. Acad. Sci. USA. 112, 15402–15407 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Telford, M. J., Budd, G. E. & Philippe, H. Phylogenomic insights into animal evolution. Curr. Biol. 25, R876–R887 (2015).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Shen, X.-X., Hittinger, C. T. & Rokas, A. Contentious relationships in phylogenomic research can also be pushed via a handful of genes. Nat. Ecol. Evol. 1, 126 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Whelan, N. V. et al. Ctenophore relationships and their placement because the sister crew to all different animals. Nat. Ecol. Evol. 1, 1737–1746 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Li, Y., Shen, X.-X., Evans, B., Dunn, C. W. & Rokas, A. Rooting the animal tree of lifestyles. Mol. Biol. Evol. 38, 4322–4333 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Afzelius, B. A. The tremendous construction of the cilia from ctenophore swimming-plates. J. Biophys. Biochem. Cytol. 9, 383–394 (1961).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Tamm, S. L. Mechanisms of ciliary co-ordination in ctenophores. J. Exp. Biol. 59, 231–245 (1973).

    Article 

    Google Pupil 

  • Tamm, S. L. Cilia and the lifetime of ctenophores. Invertebr. Biol. 133, 1–46 (2014).

    Article 

    Google Pupil 

  • Abbott, J. F. The morphology of Coeloplana. Zool. Jahrb. Abt. Anat. Ontog. Tiere 24, 41–70 (1907).

    Google Pupil 

  • Bargmann, W., Jacob, Ok. & Rast, A. Über Tentakel und Colloblasten der Ctenophore Pleurobrachia pileus. Z. Zellforsch. 123, 121–152 (1972).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • von Byern, J., Turbines, C. E. & Flammang, P. in Organic Adhesive Techniques: From Nature to Technical and Clinical Utility (eds. von Byern, J. & Grunwald, I.) 29–40 (Springer, 2010).

  • Leonardi, N. D., Thuesen, E. V. & Haddock, S. H. D. A sticky thicket of glue cells: a comparative morphometric research of colloblasts in 20 species of comb jelly (phylum Ctenophora). Cienc. Mar. 46, 211–225 (2020).

    CAS 
    Article 

    Google Pupil 

  • Horridge, G. A. Members of the family between nerves and cilia in ctenophores. Am. Zool. 5, 357–375 (1965).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Tamm, S. L. Formation of the statolith within the ctenophore Mnemiopsis leidyi. Biol. Bull. 227, 7–18 (2014).

    PubMed 
    Article 

    Google Pupil 

  • Jokura, Ok. & Inaba, Ok. Structural variety and distribution of cilia within the apical sense organ of the ctenophore Bolinopsis mikado. Cytoskeleton 77, 442–455 (2020).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Jager, M. et al. New insights on ctenophore neural anatomy: immunofluorescence learn about in Pleurobrachia pileus (Müller, 1776). J. Exp. Zool. B 316B, 171–187 (2011).

    Article 

    Google Pupil 

  • Moroz, L. L. & Kohn, A. B. Unbiased origins of neurons and synapses: insights from ctenophores. Philos. Trans. R. Soc. Lond. B 371, 20150041 (2016).

    Article 
    CAS 

    Google Pupil 

  • Horridge, G. A. The large mitochondria of ctenophore comb-plates. J. Cellular Sci. s3-105, 301–310 (1964).

    Article 

    Google Pupil 

  • Pett, W. et al. Excessive mitochondrial evolution within the ctenophore Mnemiopsis leidyi: perception from mtDNA and the nuclear genome. Mitochondrial DNA 22, 130–142 (2011).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Kohn, A. B. et al. Fast evolution of the compact and odd mitochondrial genome within the ctenophore, Pleurobrachia bachei. Mol. Phylogenet. Evol. 63, 203–207 (2012).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Christianson, L. M., Johnson, S. B., Schultz, D. T. & Haddock, S. H. D. Hidden variety of Ctenophora printed via new mitochondrial COI primers and sequences. Mol. Ecol. Resour. 22, 283–294 (2022).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Hernandez-Nicaise, M. L., Mackie, G. O. & Meech, R. W. Massive easy muscle cells of Beroë. Ultrastructure, innervation, and electric homes. J. Gen. Physiol. 75, 79–105 (1980).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Hernandez-Nicaise, M. L. & Amsellem, J. Ultrastructure of the enormous easy muscle fiber of the ctenophore Beroe ovata. J. Ultrastruct. Res. 72, 151–168 (1980).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Hernandez-Nicaise, M.-L., Nicaise, G. & Malaval, L. Massive easy muscle fibers of the ctenophore Mnemiopsis leidyi: ultrastructural learn about of in situ and remoted cells. Biol. Bull. 167, 210–228 (1984).

    Article 

    Google Pupil 

  • Mackie, G. O., Turbines, C. E. & Singla, C. L. Construction and serve as of the prehensile tentilla of Euplokamis (Ctenophora, Cydippida). Zoomorphology 107, 319–337 (1988).

    Article 

    Google Pupil 

  • Vandepas, L. E., Warren, Ok. J., Amemiya, C. T. & Browne, W. E. Setting up and keeping up number one cellular cultures derived from the ctenophore Mnemiopsis leidyi. J. Exp. Biol. 220, 1197–1201 (2017).

    PubMed 

    Google Pupil 

  • Presnell, J. S. et al. The presence of a functionally tripartite through-gut in Ctenophora has implications for metazoan persona trait evolution. Curr. Biol. 26, 2814–2820 (2016).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Haddock, S. H. D. & Case, J. F. No longer all ctenophores are bioluminescent: Pleurobrachia. Biol. Bull. 189, 356–362 (1995).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Bessho-Uehara, M. et al. Proof for de novo biosynthesis of the luminous substrate coelenterazine in ctenophores. iScience 23, 101859 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Martindale, M. Q. The onset of regenerative homes in ctenophores. Curr. Opin. Genet. Dev. 40, 113–119 (2016).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Edgar, A., Mitchell, D. G. & Martindale, M. Q. Complete-body regeneration within the lobate ctenophore Mnemiopsis leidyi. Genes 12, (2021).

  • Ramon-Mateu, J., Ellison, S. T., Angelini, T. E. & Martindale, M. Q. Regeneration within the ctenophore Mnemiopsis leidyi happens within the absence of a blastema, calls for cellular department, and is temporally separable from wound therapeutic. BMC Biol. 17, 80 (2019).

    See also  On my radar: Yuval Noah Harari’s cultural highlights | Yuval Noah Harari

    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Chun, C. Die Dissogonie, eine neue Shape der geschlechtlichen Zeugung. Festsch. zum siebensigsten Geburtstage Rudorf Leuckarts. Engelmarm, Leipzig 77–108 (1892).

  • Martindale, M. Q. Larval copy within the ctenophore Mnemiopsis mccradyi (order Lobata). Mar. Biol. 94, 409–414 (1987).

    Article 

    Google Pupil 

  • Hirota, J. Laboratory tradition and metabolism of the planktonic ctenophore, Pleurobrachia bachei A. Agassiz. in Organic oceanography of the northern North Pacific Ocean (ed. Takenouti, A. Y.) 465–484 (Idemitu Shoten, 1972).

  • Edgar, A., Ponciano, J. M. & Martindale, M. Q. Ctenophores are direct builders that reproduce regularly starting very early after hatching. Proc. Natl Acad. Sci. 119, e2122052119 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Agassiz, A. Embryology of the Ctenophorae. Mem. Am. Acad. Arts Sci. 10, 357–398 (1874).

    Google Pupil 

  • Hertwig, R. Über den Bau der Ctenophoren (Fischer, G, 1880).

  • Driesch, H. & Morgan, T. H. Zur Research der ersten Entwickelungsstadien des Ctenophoreneies. Wilhelm. Roux Arch. Entwickl. Mech. Org. 2, 204–215 (1895).

    Google Pupil 

  • Fischel, A. Experimentelle Untersuchungen am Ctenophorenei. Arch. Entwickelungsmech. Organismen 6, 109–130 (1897).

    Article 

    Google Pupil 

  • Yatsu, N. Observations and experiments at the ctenophore egg: II. Notes on early cleavage phases and experiments on cleavage. Annot. Zool. Jpn 7, 333–346 (1911).

    Google Pupil 

  • Podar, M., Haddock, S. H., Sogin, M. L. & Harbison, G. R. A molecular phylogenetic framework for the phylum Ctenophora the use of 18S rRNA genes. Mol. Phylogenet. Evol. 21, 218–230 (2001).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Simion, P., Bekkouche, N., Jager, M., Quéinnec, E. & Manuel, M. Exploring the opportunity of small RNA subunit and ITS sequences for resolving phylogenetic relationships throughout the phylum Ctenophora. Zoology 118, 102–114 (2015).

    PubMed 
    Article 

    Google Pupil 

  • Yatsu, N. Observations and experiments at the ctenophore egg: III. Experiments on germinal localization of the egg of Beroe ovata. Annot. Zool. Jpn 8, 5–13 (1912).

    Google Pupil 

  • Franc, J.-M. Etude ultrastructurale de los angeles spermatogenèse du Cténaire Beroe ovata. J. Ultrastruct. Res. 42, 255–267 (1973).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Carré, D. & Sardet, C. Fertilization and early construction in Beroe ovata. Dev. Biol. 105, 188–195 (1984).

    PubMed 
    Article 

    Google Pupil 

  • Carré, D., Rouvière, C. & Sardet, C. In vitro fertilization in ctenophores: sperm access, mitosis, and the established order of bilateral symmetry in Beroe ovata. Dev. Biol. 147, 381–391 (1991).

    PubMed 
    Article 

    Google Pupil 

  • Goudeau, M. & Goudeau, H. Successive electric responses to insemination and concurrent sperm entries within the polyspermic egg of the ctenophore Beroe ovata. Dev. Biol. 156, 537–551 (1993).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Houliston, E., Carré, D., Johnston, J. A. & Sardet, C. Axis established order and microtubule-mediated waves previous to first cleavage in Beroe ovata. Building 117, 75–87 (1993).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Rouvière, C., Houliston, E., Carré, D., Chang, P. & Sardet, C. Traits of pronuclear migration in Beroe ovata. Cellular Motil. Cytoskelet. 29, 301–311 (1994).

    Article 

    Google Pupil 

  • Jokura, Ok. et al. CTENO64 is needed for coordinated paddling of ciliary comb plate in ctenophores. Curr. Biol. 29, 3510–3516.e4 (2019).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Derelle, R. & Manuel, M. Historic connection between NKL genes and the mesoderm? Insights from Tlx expression in a ctenophore. Dev. Genes Evol. 217, 253–261 (2007).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Jager, M., Quéinnec, E., Chiori, R., Le Guyader, H. & Manuel, M. Insights into the early evolution of SOX genes from expression analyses in a ctenophore. J. Exp. Zool. B 310, 650–667 (2008).

    Article 
    CAS 

    Google Pupil 

  • Alié, A. et al. Somatic stem cells specific Piwi and Vasa genes in an grownup ctenophore: historic affiliation of “germline genes” with stemness. Dev. Biol. 350, 183–197 (2011).

    PubMed 
    Article 
    CAS 

    Google Pupil 

  • Dayraud, C. et al. Unbiased specialisation of myosin II paralogues in muscle vs. non-muscle purposes throughout early animal evolution: a ctenophore point of view. BMC Evol. Biol. 12, 107 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Jager, M. et al. Proof for involvement of Wnt signalling in physique polarities, cellular proliferation, and the neuro-sensory machine in an grownup ctenophore. PLoS ONE 8, e84363 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Pupil 

  • Freeman, G. The results of changing the placement of cleavage planes at the strategy of localization of developmental attainable in ctenophores. Dev. Biol. 51, 332–337 (1976).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Freeman, G. The function of cleavage within the localization of developmental attainable within the ctenophore Mnemiopsis leidyi. Dev. Biol. 49, 143–177 (1976).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Freeman, G. The established order of the oral–aboral axis within the ctenophore embryo. Building 42, 237–260 (1977).

    Article 

    Google Pupil 

  • Martindale, M. Q. The ontogeny and upkeep of grownup symmetry homes within the ctenophore, Mnemiopsis mccradyi. Dev. Biol. 118, 556–576 (1986).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Martindale, M. Q. & Henry, J. Q. Diagonal construction: established order of the anal axis within the ctenophore Mnemiopsis leidyi. Biol. Bull. 189, 190–192 (1995).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Martindale, M. Q. & Henry, J. Q. Building and regeneration of comb plates within the ctenophore Mnemiopsis leidyi. Biol. Bull. 191, 290–292 (1996).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Martindale, M. Q. & Henry, J. Q. Reassessing embryogenesis within the Ctenophora: the inductive function of e1 micromeres in organizing ctene row formation within the “mosaic” embryo, Mnemiopsis leidyi. Building 124, 1999–2006 (1997).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Martindale, M. Q. & Henry, J. Q. Intracellular destiny mapping in a basal metazoan, the ctenophore Mnemiopsis leidyi, unearths the origins of mesoderm and the life of indeterminate cellular lineages. Dev. Biol. 214, 243–257 (1999).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Henry, J. Q. & Martindale, M. Q. Legislation and regeneration within the ctenophore Mnemiopsis leidyi. Dev. Biol. 227, 720–733 (2000).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Henry, J. Q. & Martindale, M. Q. More than one inductive alerts are concerned within the construction of the ctenophore Mnemiopsis leidyi. Dev. Biol. 238, 40–46 (2001).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Henry, J. Q. & Martindale, M. Q. Inductive interactions and embryonic equivalence teams in a basal metazoan, the ctenophore Mnemiopsis leidyi. Evol. Dev. 6, 17–24 (2004).

    PubMed 
    Article 

    Google Pupil 

  • Fischer, A. H., Pang, Ok., Henry, J. Q. & Martindale, M. Q. A cleavage clock regulates options of lineage-specific differentiation within the construction of a basal branching metazoan, the ctenophore Mnemiopsis leidyi. Evodevo 5, 4 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Babonis, L. S. et al. Integrating embryonic construction and evolutionary historical past to signify tentacle-specific cellular varieties in a ctenophore. Mol. Biol. Evol. 35, 2940–2956 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil 

  • Yamada, A. & Martindale, M. Q. Expression of the ctenophore Mind Issue 1 forkhead gene ortholog (ctenoBF-1) mRNA is particular to the presumptive mouth and feeding equipment: implications for axial group within the Metazoa. Dev. Genes Evol. 212, 338–348 (2002).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Yamada, A., Pang, Ok., Martindale, M. Q. & Tochinai, S. Unusually advanced T-box gene supplement in diploblastic metazoans. Evol. Dev. 9, 220–230 (2007).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Pang, Ok. & Martindale, M. Q. Developmental expression of homeobox genes within the ctenophore Mnemiopsis leidyi. Dev. Genes Evol. 218, 307–319 (2008).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Layden, M. J., Meyer, N. P., Pang, Ok., Seaver, E. C. & Martindale, M. Q. Expression and phylogenetic research of the zic gene circle of relatives within the evolution and construction of metazoans. Evodevo 1, 12 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Pang, Ok. et al. Genomic insights into Wnt signaling in an early diverging metazoan, the ctenophore Mnemiopsis leidyi. Evodevo 1, 10 (2010).

    See also  How Mastering Your Tradition Can Help You Keep Ahead

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Pang, Ok., Ryan, J. F., Baxevanis, A. D. & Martindale, M. Q. Evolution of the TGF-β signaling pathway and its attainable function within the ctenophore, Mnemiopsis leidyi. PLoS ONE 6, e24152 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Reitzel, A. M. et al. Nuclear receptors from the ctenophore Mnemiopsis leidyi lack a zinc-finger DNA-binding area: lineage-specific loss or ancestral situation within the emergence of the nuclear receptor superfamily? Evodevo 2, 3 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Schnitzler, C. E. et al. Genomic group, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: a brand new view of ctenophore photocytes. BMC Biol. 10, 107 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Simmons, D. Ok., Pang, Ok. & Martindale, M. Q. Lim homeobox genes within the ctenophore Mnemiopsis leidyi: the evolution of neural cellular sort specification. Evodevo 3, 2 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Schnitzler, C. E., Simmons, D. Ok., Pang, Ok., Martindale, M. Q. & Baxevanis, A. D. Expression of more than one Sox genes by way of embryonic construction within the ctenophore Mnemiopsis leidyi is spatially limited to zones of cellular proliferation. Evodevo 5, 15 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Pupil 

  • Reitzel, A. M., Pang, Ok. & Martindale, M. Q. Developmental expression of “germline”- and “intercourse choice”-related genes within the ctenophore Mnemiopsis leidyi. Evodevo 7, 17 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Pupil 

  • Presnell, J. S. & Browne, W. E. Krüppel-like issue gene serve as within the ctenophore Mnemiopsis leidyi assessed via CRISPR/Cas9-mediated genome enhancing. Building 148, dev199771 (2021).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. 100 of the International’s Worst Invasive Alien Species: A Variety from the World Invasive Species Database (Hollands Printing, 2000).

  • Kideys, A. E. Ecology. Fall and upward push of the Black Sea ecosystem. Science 297, 1482–1484 (2002).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Costello, J. H., Bayha, Ok. M., Mianzan, H. W., Shiganova, T. A. & Purcell, J. E. Transitions of Mnemiopsis leidyi (Ctenophora: Lobata) from a local to an unique species: a evaluate. Hydrobiologia 690, 21–46 (2012).

    Article 

    Google Pupil 

  • Jaspers, C. et al. Ocean present connectivity propelling the secondary unfold of a marine invasive comb jelly throughout western Eurasia. Glob. Ecol. Biogeogr. 27, 814–827 (2018).

    Article 

    Google Pupil 

  • Jaspers, C. et al. Invasion genomics discover contrasting situations of genetic variety in a popular marine invader. Proc. Natl Acad. Sci. USA 118, e2116211118 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Colin, S. P., Costello, J. H., Hansson, L. J., Titelman, J. & Dabiri, J. O. Stealth predation and the predatory good fortune of the invasive ctenophore Mnemiopsis leidyi. Proc. Natl Acad. Sci. USA 107, 17223–17227 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Gemmell, B. J., Colin, S. P., Costello, J. H. & Sutherland, Ok. R. A ctenophore (comb jelly) employs vortex rebound dynamics and outperforms different gelatinous swimmers. R. Soc. Open Sci. 6, 181615 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Jaspers, C., Titelman, J., Hansson, L. J., Haraldsson, M. & Ditlefsen, C. R. The invasive ctenophore Mnemiopsis leidyi poses no direct danger to Baltic cod eggs and larva. Limnol. Oceanogr. 56, 431–439 (2011).

    Article 

    Google Pupil 

  • Jaspers, C., Møller, L. F. & Kiørboe, T. Salinity gradient of the Baltic Sea limits the copy and inhabitants enlargement of the newly invaded comb jelly Mnemiopsis leidyi. PLoS ONE 6, e24065 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Jaspers, C., Møller, L. F. & Kiørboe, T. Replica charges underneath variable meals prerequisites and hunger in Mnemiopsis leidyi: importance for the invasion good fortune of a ctenophore. J. Plankton Res. 37, 1011–1018 (2015).

    Article 

    Google Pupil 

  • Jaspers, C., Marty, L. & Kiørboe, T. Variety for life-history characteristics to maximise inhabitants enlargement in an invasive marine species. Glob. Chang. Biol. 24, 1164–1174 (2018).

    PubMed 
    Article 

    Google Pupil 

  • Reeve, M. R., Syms, M. A. & Kremer, P. Enlargement dynamics of a ctenophore (Mnemiopsis) with regards to variable meals provide. I. Carbon biomass, feeding, egg manufacturing, enlargement and assimilation potency. J. Plankton Res. 11, 535–552 (1989).

    Article 

    Google Pupil 

  • Jaspers, C. et al. Resilience in transferring water: results of turbulence at the predatory have an effect on of the lobate ctenophore Mnemiopsis leidyi. Limnol. Oceanogr. 63, 445–458 (2018).

    Article 

    Google Pupil 

  • Jaspers, C., Costello, J. H. & Colin, S. P. Carbon content material of Mnemiopsis leidyi eggs and particular egg manufacturing charges in northern Europe. J. Plankton Res. 37, 11–15 (2015).

    CAS 
    Article 

    Google Pupil 

  • Winnikoff, J. R., Haddock, S. H. D. & Budin, I. Intensity- and temperature-specific fatty acid diversifications in ctenophores from excessive habitats. J. Exp. Biol. jeb.242800 (2021).

  • Jaspers, C. et al. Microbiota variations of the brush jelly Mnemiopsis leidyi in local and invasive sub-populations. Entrance. Mar. Sci. 6, 635 (2019).

    Article 

    Google Pupil 

  • Sutherland, Ok. R., Costello, J. H., Colin, S. P. & Dabiri, J. O. Ambient fluid motions affect swimming and feeding via the ctenophore Mnemiopsis leidyi. J. Plankton Res. 36, 1310–1322 (2014).

    Article 

    Google Pupil 

  • Colin, S. P. et al. Raising the predatory impact: sensory-scanning foraging technique via the lobate ctenophore Mnemiopsis leidyi. Limnol. Oceanogr. 60, 100–109 (2015).

    Article 

    Google Pupil 

  • Parker, G. H. The actions of the swimming-plates in ctenophores, with regards to the theories of ciliary metachronism. J. Exp. Zool. 2, 407–423 (1905).

    Article 

    Google Pupil 

  • Baker, L. D. & Reeve, M. R. Laboratory tradition of the lobate ctenophore Mnemiopsis mccradyi with notes on feeding and fecundity. Mar. Biol. 26, 57–62 (1974).

    Article 

    Google Pupil 

  • Reeve, M. R., Walter, M. A. & Ikeda, T. Laboratory research of ingestion and meals usage in lobate and tentaculate ctenophores. Limnol. Oceanogr. 23, 740–751 (1978).

    Article 

    Google Pupil 

  • Swanberg, N. The feeding conduct of Beroe ovata. Mar. Biol. 24, 69–76 (1974).

    Article 

    Google Pupil 

  • Haddock, S. H. D. Comparative feeding conduct of planktonic ctenophores. Integr. Comp. Biol. 47, 847–853 (2007).

    PubMed 
    Article 

    Google Pupil 

  • Mayer, A. G. Ctenophores of the Atlantic Coast of North The us (Carnegie Establishment of Washington, 1912).

  • Seravin, L. N. The systematic revision of the genus Mnemiopsis (Ctenophora, Lobata). 2. Species attribution of Mnemiopsis from the Black Sea and the species composition of the genus Mnemiopsis. Zool. Zh. 73, 19–34 (1994).

    Google Pupil 

  • Bayha, Ok. M. et al. International phylogeography of the invasive ctenophore Mnemiopsis leidyi (Ctenophora) in accordance with nuclear and mitochondrial DNA knowledge. Biol. Invasions 17, 827–850 (2015).

    Article 

    Google Pupil 

  • Costello, J. H., Sullivan, B. Ok., Gifford, D. J., Van Keuren, D. & Sullivan, L. J. Seasonal refugia, shoreward thermal amplification, and metapopulation dynamics of the ctenophore Mnemiopsis leidyi in Narragansett Bay, Rhode Island. Limnol. Oceanogr. 51, 1819–1831 (2006).

    Article 

    Google Pupil 

  • Pang, Ok. & Martindale, M. Q. Ctenophore whole-mount in situ hybridization. CSH Protoc. 2008, db.prot5087 (2008).

  • Salinas-Saavedra, M. & Martindale, M. Q. Stepped forward protocol for spawning and immunostaining embryos and juvenile phases of the ctenophore Mnemiopsis leidyi. Protoc. Change https://doi.org/10.1038/protex.2018.092 (2018).

  • Dieter, A. C., Vandepas, L. E. & Browne, W. E. in Complete-Frame Regeneration: Strategies and Protocols (eds. Blanchoud, S. & Galliot, B.) (Springer, 2022).

  • Yamada, A., Martindale, M. Q., Fukui, A. & Tochinai, S. Extremely conserved purposes of the Brachyury gene on morphogenetic actions: perception from the early-diverging phylum Ctenophora. Dev. Biol. 339, 212–222 (2010).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Moreland, R. T. et al. A custom designed Internet portal for the genome of the ctenophore Mnemiopsis leidyi. BMC Genomics 15, 316 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

    See also  Russian Musicians See Reside displays Scrapped At House Amid Crackdown On Warfare Dissent

  • Moreland, R. T., Nguyen, A.-D., Ryan, J. F. & Baxevanis, A. D. The Mnemiopsis Genome Undertaking Portal: integrating new gene expression sources and bettering knowledge visualization. Database 2020, baaa029 (2020).

  • Davidson, P. L. et al. The maternal–zygotic transition and zygotic activation of the Mnemiopsis leidyi genome happens throughout the first 3 cleavage cycles. Mol. Reprod. Dev. 84, 1218–1229 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Sebé-Pedrós, A. et al. Early metazoan cellular sort variety and the evolution of multicellular gene law. Nat. Ecol. Evol. 2, 1176–1188 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Levin, M. et al. The mid-developmental transition and the evolution of animal physique plans. Nature 531, 637–641 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Sachkova, M. Y. et al. Neuropeptide repertoire and 3-d anatomy of the ctenophore fearful machine. Curr. Biol. https://doi.org/10.1016/j.cub.2021.09.005 (2021).

    Article 
    PubMed 

    Google Pupil 

  • Fidler, A. L. et al. Collagen IV and basement membrane on the evolutionary first light of metazoan tissues. eLife 6, (2017).

  • Draper, G. W., Shoemark, D. Ok. & Adams, J. C. Modelling the early evolution of extracellular matrix from trendy ctenophores and sponges. Essays Biochem. 63, 389–405 (2019).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Ryan, J. F. et al. The homeodomain supplement of the ctenophore Mnemiopsis leidyi means that Ctenophora and Porifera diverged previous to the ParaHoxozoa. Evodevo 1, 9 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Maxwell, E. Ok., Ryan, J. F., Schnitzler, C. E., Browne, W. E. & Baxevanis, A. D. MicroRNAs and crucial parts of the microRNA processing equipment aren’t encoded within the genome of the ctenophore Mnemiopsis leidyi. BMC Genomics 13, 714 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Traylor-Knowles, N., Vandepas, L. E. & Browne, W. E. Nonetheless enigmatic: innate immunity within the ctenophore Mnemiopsis leidyi. Integr. Comp. Biol. 59, 811–818 (2019).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Felsenstein, J. Phylogenies and the comparative way. Am. Nat. 125, 1–15 (1985).

    Article 

    Google Pupil 

  • Dunn, C. W., Giribet, G., Edgecombe, G. D. & Hejnol, A. Animal phylogeny and its evolutionary implications. Annu. Rev. Ecol. Evol. Syst. 45, 371–395 (2014).

    Article 

    Google Pupil 

  • Giribet, G. Morphology must no longer be forgotten within the technology of genomics—a phylogenetic point of view. Zool. Anz. 256, 96–103 (2015).

    Article 

    Google Pupil 

  • Patry, W. L., Bubel, M., Hansen, C. & Knowles, T. Diffusion tubes: a technique for the mass tradition of ctenophores and different pelagic marine invertebrates. PeerJ 8, e8938 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Baker, L. D. The Ecology of the Ctenophore Mnemiopsis mccradyi Mayer, in Biscayne Bay, Florida (Rosenstiel Faculty of Marine and Atmospheric Science, 1973).

  • Raskoff, Ok. A., Sommer, F. A., Hamner, W. M. & Move, Ok. M. Assortment and tradition ways for gelatinous zooplankton. Biol. Bull. 204, 68–80 (2003).

    PubMed 
    Article 

    Google Pupil 

  • Greve, W. The “planktonkreisel”, a brand new software for culturing zooplankton. Mar. Biol. 1, 201–203 (1968).

    Article 

    Google Pupil 

  • Ward, W. W. Aquarium programs for the upkeep of ctenophores and jellyfish and for the hatching and harvesting of brine shrimp (Artemia salina) larvae. Chesap. Sci. 15, 116–118 (1974).

    Article 

    Google Pupil 

  • Kremer, P. Impact of meals availability at the metabolism of the ctenophore Mnemiopsis mccradyi. Mar. Biol. 71, 149–156 (1982).

    Article 

    Google Pupil 

  • Kremer, P. & Reeve, M. R. Enlargement dynamics of a ctenophore (Mnemiopsis) with regards to variable meals provide. II. Carbon budgets and enlargement type. J. Plankton Res. 11, 553–574 (1989).

    Article 

    Google Pupil 

  • Harbison, G. R., Biggs, D. C. & Madin, L. P. The associations of Amphipoda Hyperiidea with gelatinous zooplankton—II. Associations with Cnidaria. Ctenophora Radiolaria. Deep Sea Res. I 24, 465–488 (1977).

    Article 

    Google Pupil 

  • Laval, P. Hyperiid amphipods as crustacean parasitoids related to gelatinous zooplankton. Oceanogr. Mar. Biol. Annu. Rev. 18, 11–56 (1980).

    Google Pupil 

  • Yip, S. Y. Parasites of Pleurobrachia pileus Müller, 1776 (Ctenophora), from Galway Bay, western Eire. J. Plankton Res. 6, 107–121 (1984).

    Article 

    Google Pupil 

  • Martorelli, S. R. Digenea parasites of jellyfish and ctenophores of the southern Atlantic. Hydrobiologia 451, 305–310 (2001).

    Article 

    Google Pupil 

  • Moss, A. G., Estes, A. M., Muellner, L. A. & Morgan, D. D. Protistan epibionts of the ctenophore Mnemiopsis mccradyi Mayer. Hydrobiologia 451, 295–304 (2001).

    Article 

    Google Pupil 

  • Reitzel, A. M. et al. Ecological and developmental dynamics of a bunch–parasite machine involving a sea anemone and two ctenophores. J. Parasitol. 93, 1392–1402 (2007).

    PubMed 
    Article 

    Google Pupil 

  • Zeidler, W. & Browne, W. E. A brand new Glossocephalus (Crustacea: Amphipoda: Hyperiidea: Oxycephalidae) from deep-water within the Monterey Bay area, California, USA, with an summary of the genus. Zootaxa 4027, 408–424 (2015).

    PubMed 
    Article 

    Google Pupil 

  • Reitzel, A. M., Daly, M., Sullivan, J. C. & Finnerty, J. R. Comparative anatomy and histology of developmental and parasitic phases within the lifestyles cycle of the coated sea anemone Edwardsiella lineata. J. Parasitol. 95, 100–112 (2009).

    PubMed 
    Article 

    Google Pupil 

  • Pang, Ok. & Martindale, M. Q. Mnemiopsis leidyi spawning and embryo assortment. CSH Protoc. 2008, db.prot5085 (2008).

    Google Pupil 

  • Freeman, G. & Reynolds, G. T. The improvement of bioluminescence within the ctenophore Mnemiopsis leidyi. Dev. Biol. 31, 61–100 (1973).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Martindale, M. Q. & Henry, J. J. Experimental research of tentacle formation within the ctenophore Mnemiopsis leidyi. Biol. Bull. 193, 245–247 (1997).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Noda, N. & Tamm, S. L. Lithocytes are transported alongside the ciliary floor to construct the statolith of ctenophores. Curr. Biol. 24, R951–R952 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Tamm, S. L. & Moss, A. G. Unilateral ciliary reversal and motor responses throughout prey seize via the ctenophore Pleurobrachia. J. Exp. Biol. 114, 443–461 (1985).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Salinas-Saavedra, M. & Martindale, M. Q. Par protein localization throughout the early construction of Mnemiopsis leidyi suggests other modes of epithelial group within the metazoa. eLife 9, (2020).

  • Technau, U. Brachyury, the blastopore and the evolution of the mesoderm. Bioessays 23, 788–794 (2001).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Papaioannou, V. E. The T-box gene circle of relatives: rising roles in construction, stem cells and most cancers. Building 141, 3819–3833 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Yasuoka, Y., Shinzato, C. & Satoh, N. The mesoderm-forming gene brachyury regulates ectoderm-endoderm demarcation within the coral Acropora digitifera. Curr. Biol. 26, 2885–2892 (2016).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Servetnick, M. D. et al. Cas9-mediated excision of Nematostella brachyury disrupts endoderm construction, pharynx formation and oral–aboral patterning. Building 144, 2951–2960 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Pupil 

  • Jinek, M. et al. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Xiao, A. et al. CasOT: a genome-wide Cas9/gRNA off-target looking out software. Bioinformatics 30, 1180–1182 (2014).

    CAS 
    PubMed 
    Article 

    Google Pupil 

  • Hsu, P. D. et al. DNA focused on specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Gagnon, J. A. et al. Environment friendly mutagenesis via Cas9 protein-mediated oligonucleotide insertion and large-scale evaluate of single-guide RNAs. PLoS ONE 9, e98186 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Pupil 

  • Kistler, Ok. E., Vosshall, L. B. & Matthews, B. J. Genome engineering with CRISPR–Cas9 within the mosquito Aedes aegypti. Cellular Rep. 11, 51–60 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Varshney, G. Ok. et al. Top-throughput gene focused on and phenotyping in zebrafish the use of CRISPR/Cas9. Genome Res. 25, 1030–1042 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Pupil 

  • Schultz, D. T. et al. A chromosome-scale genome meeting and karyotype of the ctenophore Hormiphora californensis. G3 https://doi.org/10.1093/g3journal/jkab302 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Pupil